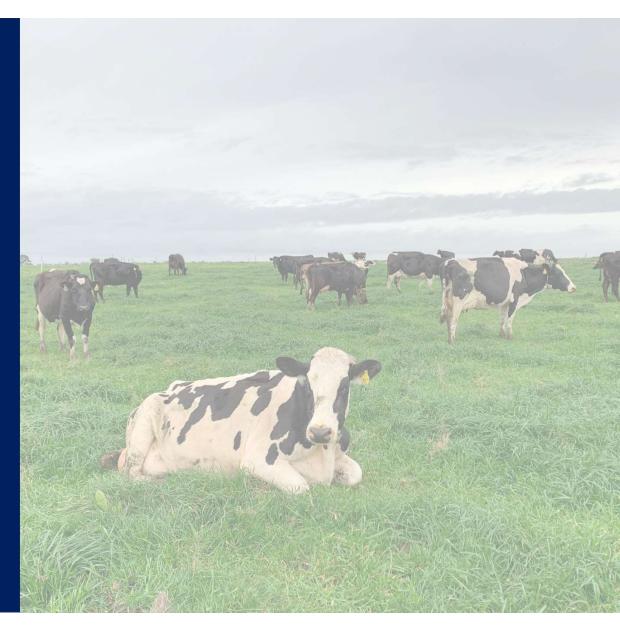


Estrategias de intensificación de sistemas lecheros

18 de octubre, 2024 Centro Regional Sur - Facultad de Agronomía

Participan:



Producción y cosecha de forraje

Ing. Agr. Msc. Gastón Ortega

Descripción tratamientos

Alta productividad AP

3.0

VO ha PP

Bajo Costo BC

1.8

100%

Producción de forraje

Cosecha de forraje (directa/mecánica)

20%

2452 kg MS ha PP año

23471 It ha PP 1854 kg ha PP

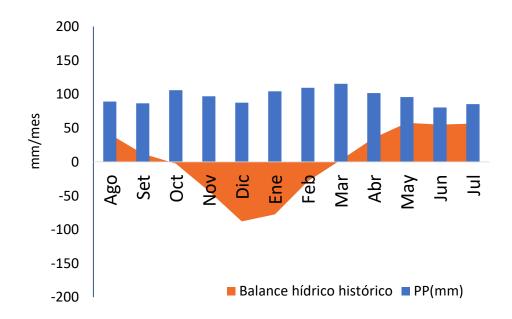
\$\$\$

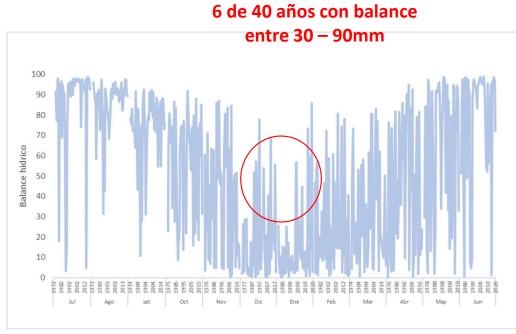
Reservas importadas

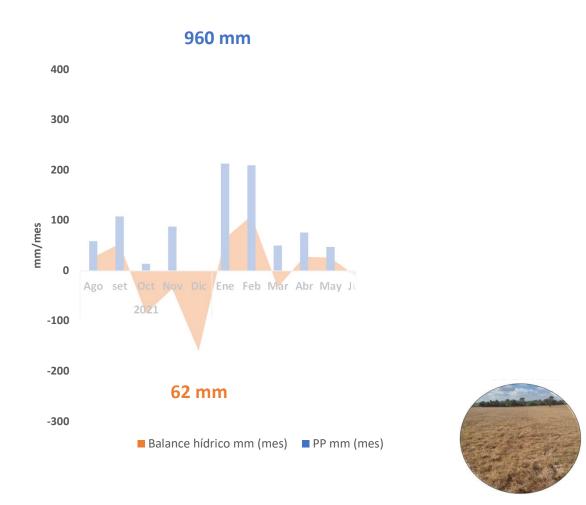
Productividad

Costo alimentación

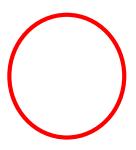
14082 It ha PP 1112 kg ha PP


\$


Sistemas de pastoreo

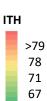

Caracterización régimen hídrico histórico

Fuente: datos agrometeorológicos INIA Las brujas 1972-2024


Caracterización régimen hídrico 2021-2024

1337 mm

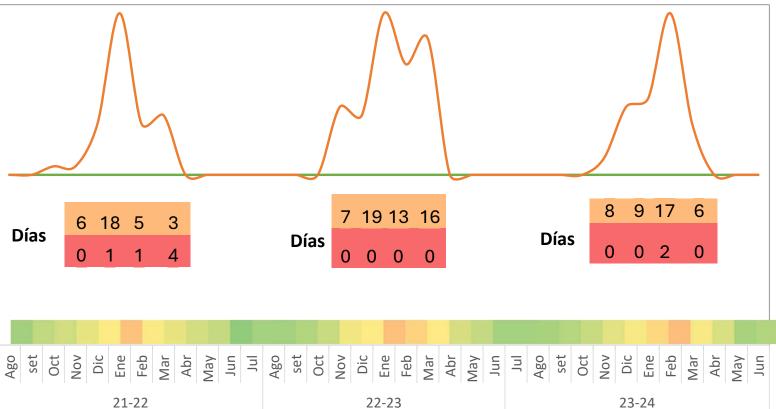
652mm



505 mm

¿Para cuál escenario climático nos preparamos?

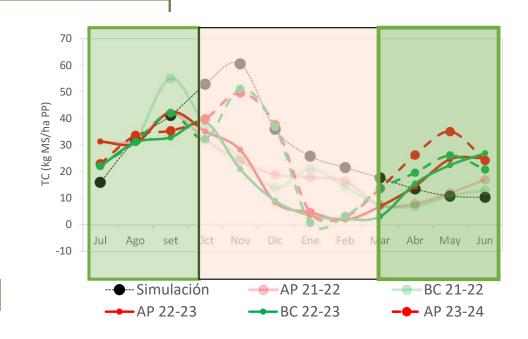
Temperatura, humedad relativa e ITH



ESTRÉS

ITH > 72

SIN ESTRÉS


Producción de forraje

PP1 PP2 PP3 PP4 PP1 bianual PP2 bianual

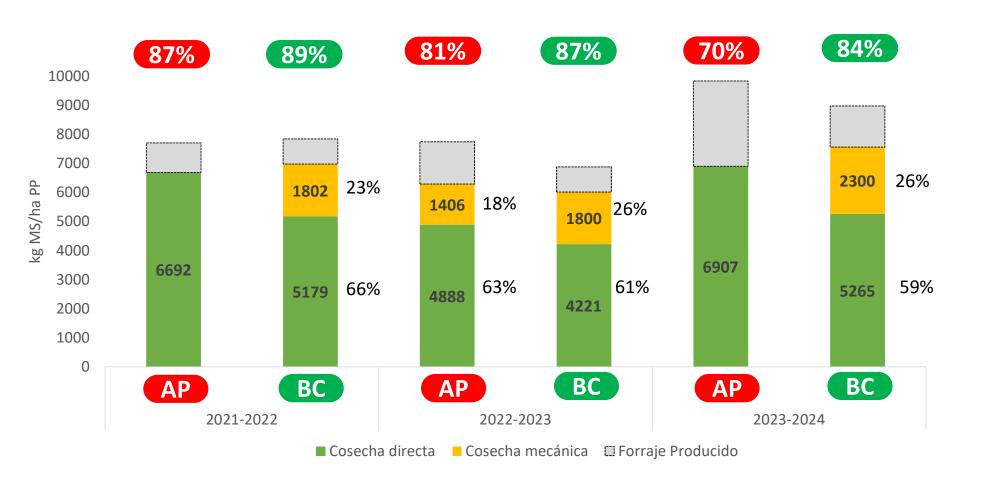
82 %

6 años

Producción kg MS/ha/año	AP	ВС	
2021-2022	7711	7846	
2022-2023	7747	6884	
2023-2024	9844	8881	
Objetivo	10229		

Nutrientes

65 kg N/ha año → 1,6 kg N/d rotación


33 kg P₂0₅ /ha → previo análisis suelo en otoño

<u>Criterios según especie:</u> 12 – 14 ppm gramíneas

20 ppm P- Bray mezcla alfalfa

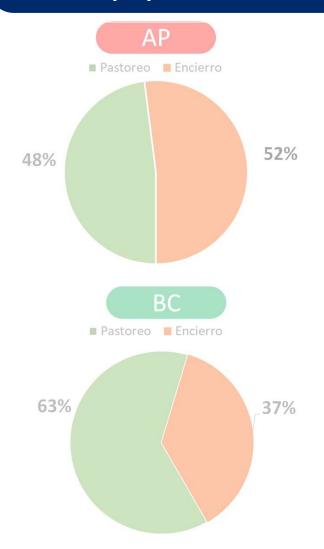
Producción y cosecha de forraje

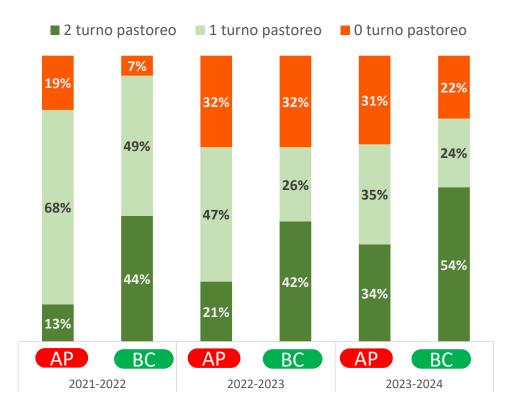
Producción y cosecha de forraje: reservas

En el área de pastoreo: N° silopacks/VO

En el área de apoyo AP

	АР	ВС	Kg MS ha PP	
2021-2022	×	3.8	1802	
2022-2023	1.6	3.9	1800	+ 21 %
2023-2024	*	5.3	2300	+ 55 %


	Rend Mz kg MS ha	Kg MS ha PP	-
2021-2022	7800	3014	+ 23 %
2022-2023	5164	1996	- 19 %
2023-2024	10407	4022	+ 68 %


Corresponde a las 8 has de área de apoyo proyectadas

21-22 22-23 23-24

Tiempo pastoreo vs encierro

Pre-pastoreo

Post-pastoreo

23 <u>+</u> 3.0 cm

21 <u>+</u> 4.3 cm

Ocupación diaria

13 <u>+</u> 1.9 cm

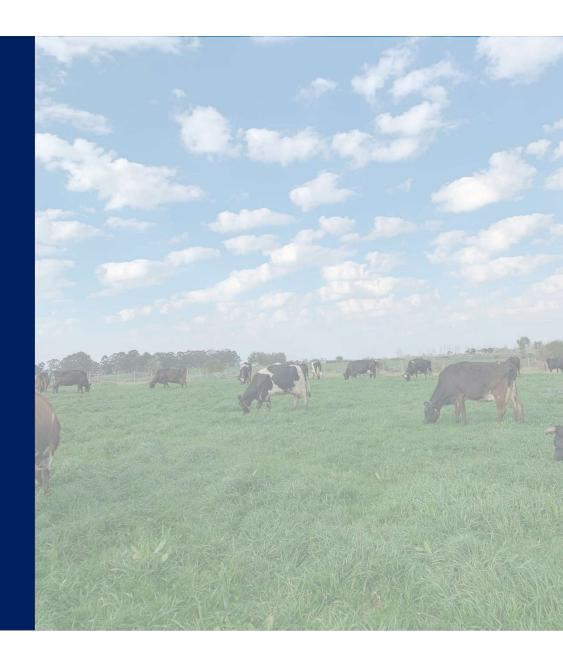
3 días ocupación

13 <u>+</u> 2.1 cm

44%

38%

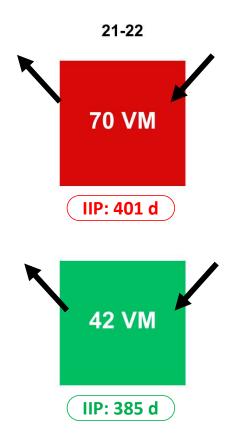
800 – 1000 kg MS/ha


Principales conceptos

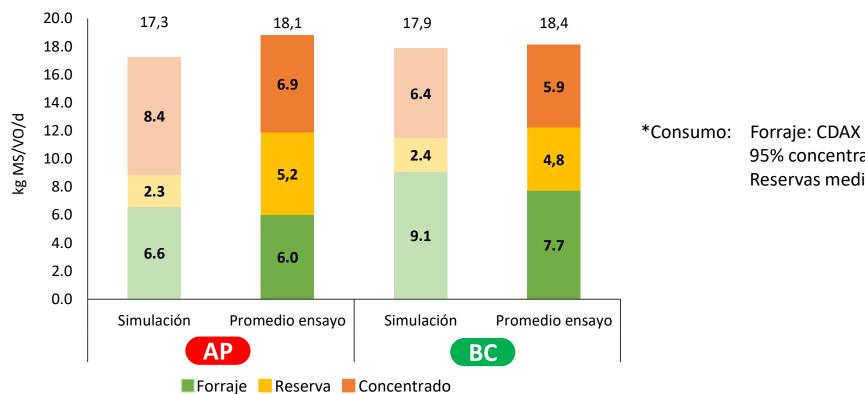
- En años desafiantes se alcanzó un piso de 7 ton MS/ha de forraje producido.
 - + variabilidad en área de reservas AP
- Ambos sistemas fueron eficientes en la cosecha, pero con estrategias diferentes
- El control y monitoreo del área de pastoreo fueron determinantes: **Altura de ingreso y remanentes**
- Gestionar <u>franjas de ocupación de más días</u> no fue limitante para tener el <u>sistema bajo control</u>

Características del rodeo, alimentación y producción de leche

Ing. Agr. María Pía Briñón

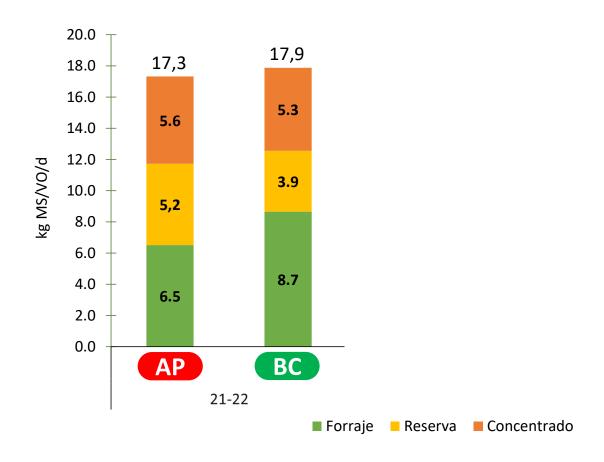

Carga y PV promedio

	AP			BC		
	Carga (VO/ha PP)	PV (kg/VO)	kg/ha PP	Carga (VO/ha PP)	PV (kg/VO)	kg/ha PP
Promedio						
ensayo	2,8 ± 0,1	495 ± 26	1385 ± 72	1,7 ± 0,1	500 ± 23	850 ± 39


Dinámica de los rodeos

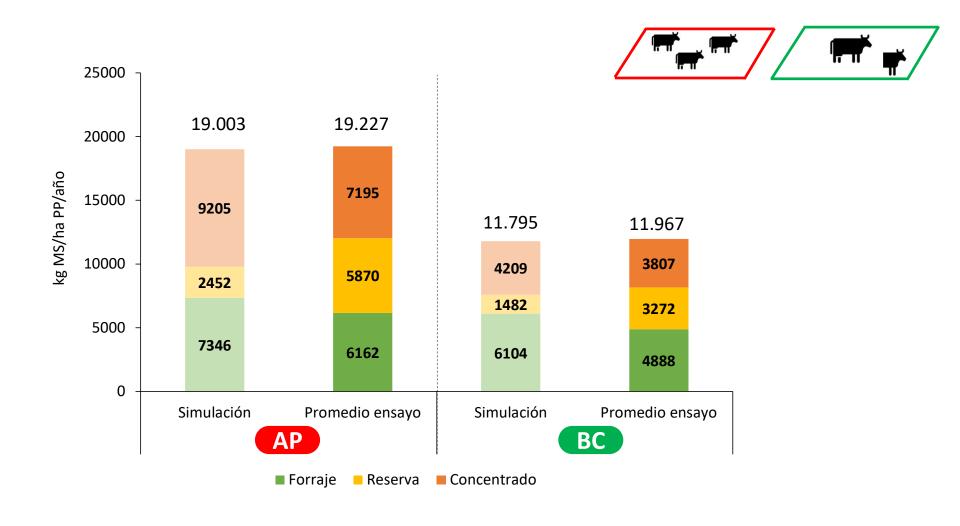
Estructura de alimentación: simulado vs. consumido

95% concentrado

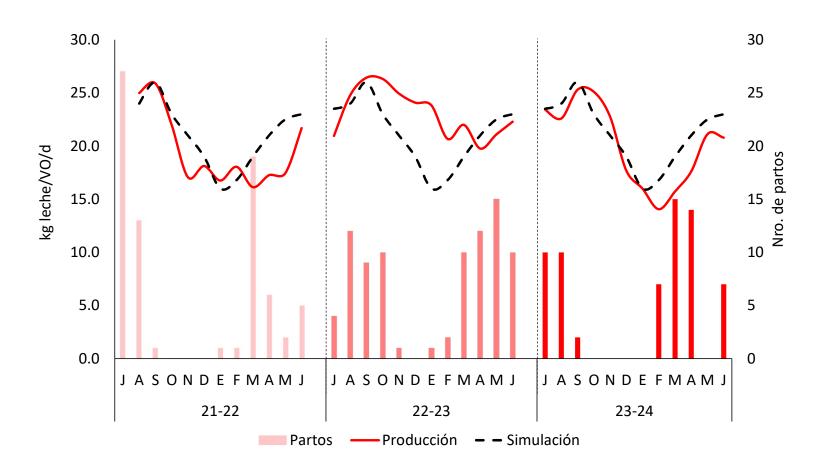

Reservas mediante Bal CMS

	АР		ВС		
	PC (%)	FDN (%)	PC (%)	FDN (%)	
Promedio ensayo	17,2 ± 2,3	47,7 ± 7,8	19,2 ± 2,5	47,9 ± 6,7	

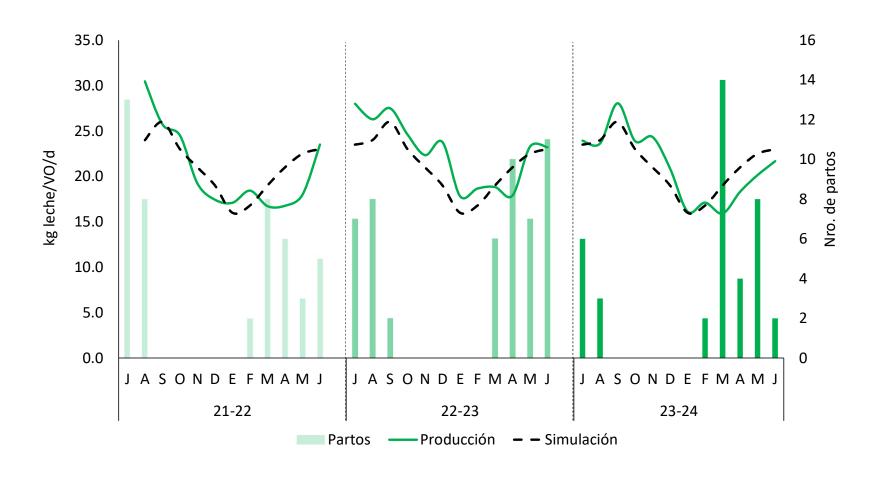
Estructura de alimentación por ejercicio



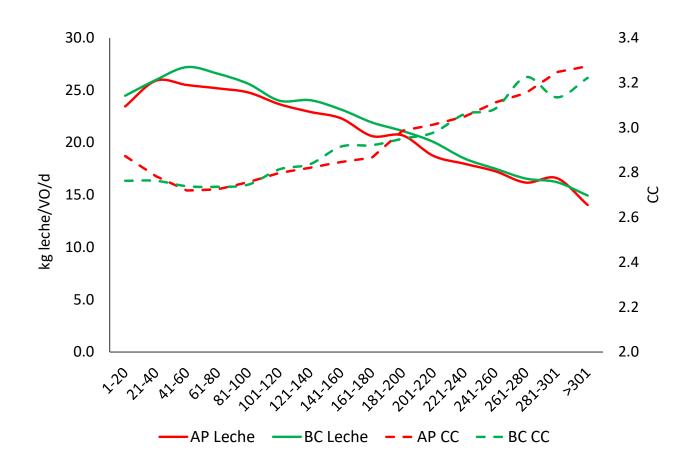
Reserva: AP: + 5% BC: + 27%


* Consumo: 95% concentrado, reservas mediante Bal CMS

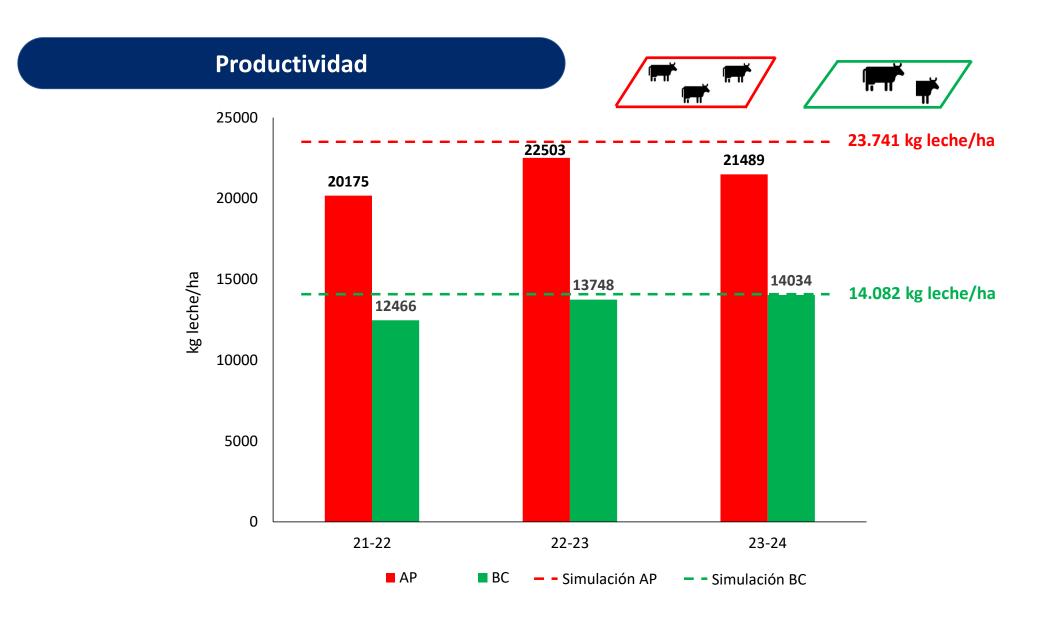
Estructura de alimentación: simulado vs. utilizado



Producción de leche individual AP: 21,0 kg VO⁻¹ d⁻¹ BC: 21,5 kg VO⁻¹ d⁻¹ Simulación: 21,2 kg VO⁻¹ d⁻¹ 35.0 30.0 25.0 kg leche/VO/d 20.0 15.0 10.0 5.0 ASONDEFMAMJ JASONDEFMAMJ JASONDEFMAMJ 21-22 22-23 23-24 BC --- Simulación

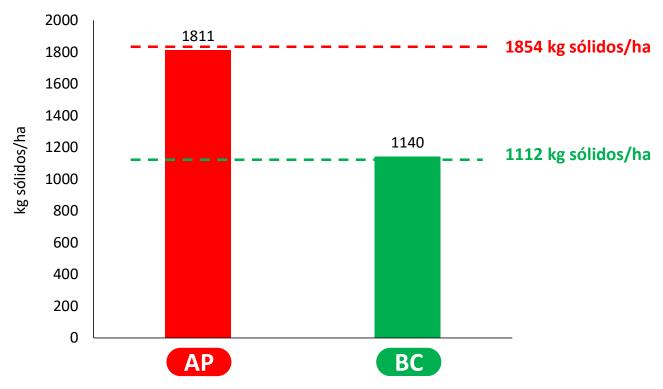

Producción de leche y distribución de partos AP

Producción de leche y distribución de partos BC

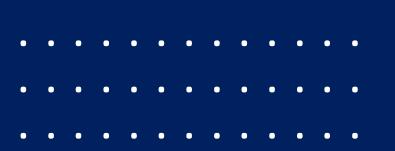


Curva de lactancia y evolución de CC

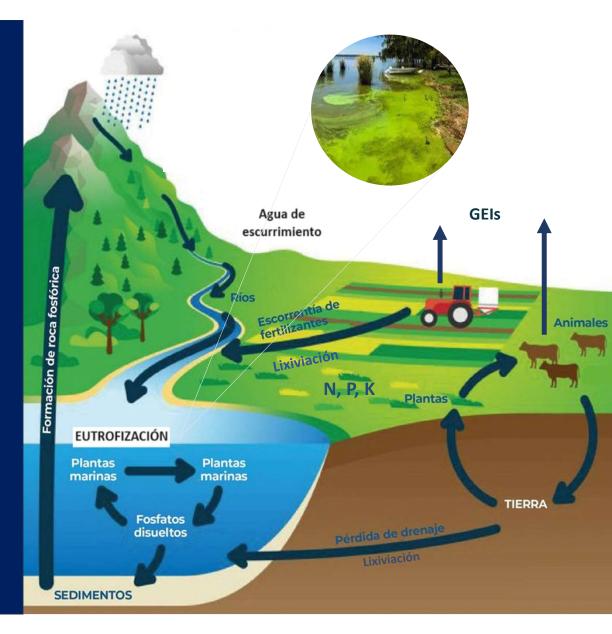
Sanidad de ubre


		%Vacas sanas	%Vacas infectadas	%Nuevas infecciones	% Incidencia
		<200mil RCS	>200mil RCS	>200mil RCS	
	21-22	78,8	21,6	13,4	2,7
AD	22-23	75,2	23,9	12,2	5,4
AP	23-24	71,3	28,8	15,1	5,7
	Promedio	75,1	24,8	13,5	4,6
	21-22	74,9	25,9	13,4	5,5
DC	22-23	73,6	26,4	12,0	3,8
ВС	23-24	74,9	25,1	13,6	5,1
	Promedio	74,5	25,8	13,0	4,8

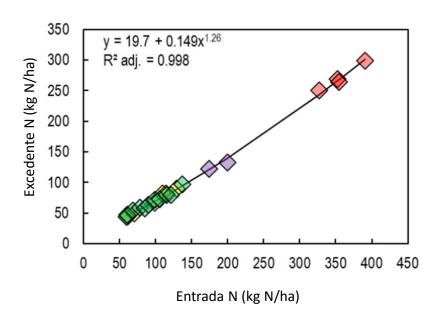
Producción de sólidos (G + P)



	АР		ВС	
	G (%)	P (%)	G (%)	P (%)
Promedio ensayo	4,7 ± 0,51	3,9 ± 0,2	4,8 ± 0,6	3,9 ± 0,2


Principales conceptos

- Manejo integrado del rodeo con criterios bien definidos
- Las estrategias de alimentación establecieron una relación Forraje:Concentrado de 63:37 para AP y 68:32 para BC
- Impacto + del aumento de la carga en la productividad
- + Requerimientos de reserva y concentrado por ha
- Estabilidad en resultados productivos en ambos sistemas
- El **BC** se sitúa en los **sistemas más productivos** 25% de la industria



¿Por qué es importante cuantificar el impacto ambiental?

Ing. Agr. Lucía Gil

✓ Balance de nutrientes

Fuente: Stirling et al., 2024

ENTRADAS

Alta productividad

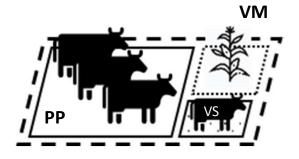
SALIDAS

46%

CONCENTRADO

33%

FERTILIZANTES


18%

RESERVAS FORRAJERAS

1%

FBN

1% CAMA GANADO

100%

LECHE

EXCEDENTE

kg/ha/año

N 310 ± 33 P 82 ± 31 K 131 ± 35

?

LIXIVIACIÓN EROSIÓN VOLATILIZACIÓN

ENTRADAS

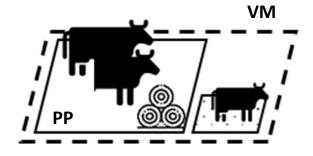
Bajo costo

SALIDAS

55%

FERTILIZANTES

37%


CONCENTRADO

7%

RESERVAS FORRAJERAS

1%

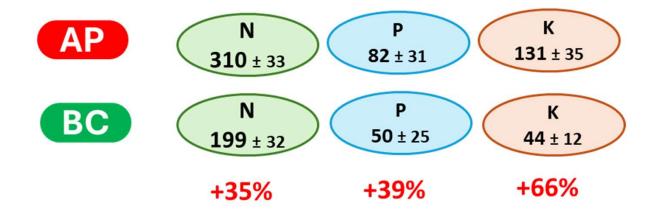
FBN

100%

LECHE

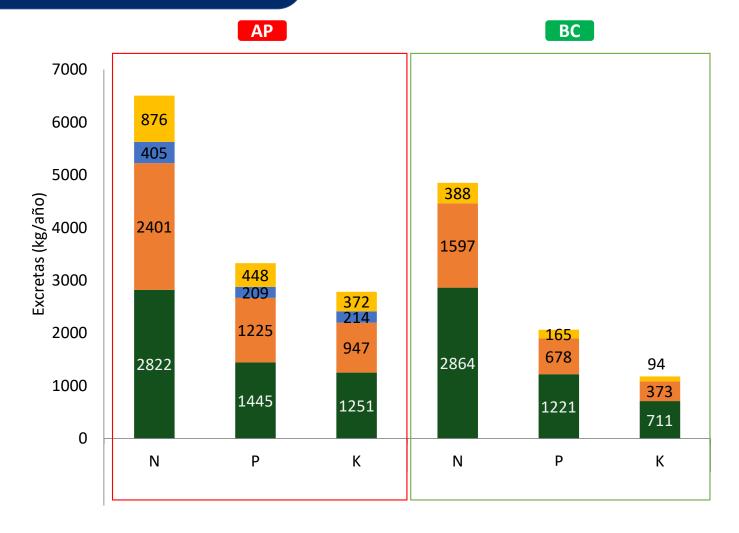
EXCEDENTE

kg/ha/año

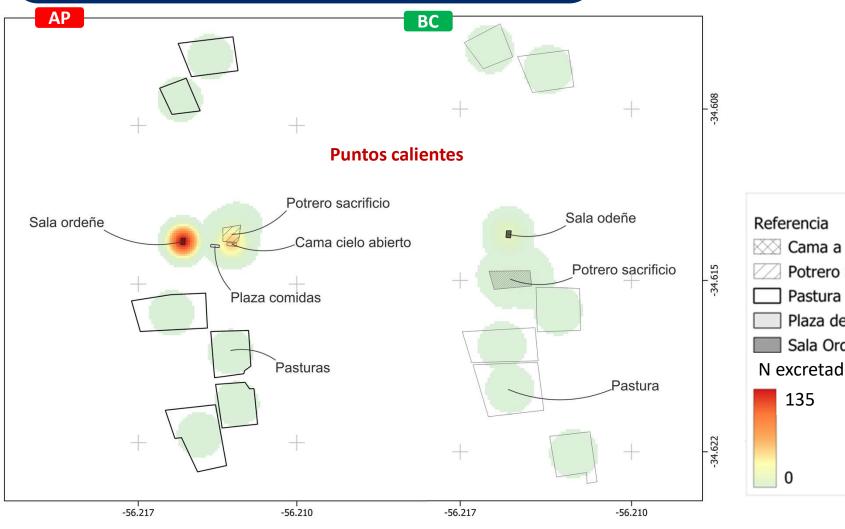

N 199 ± 32

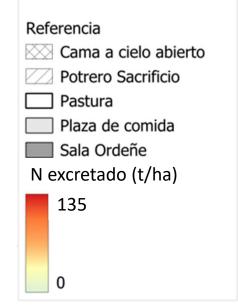
P 50 ± 25 K 44 ± 12

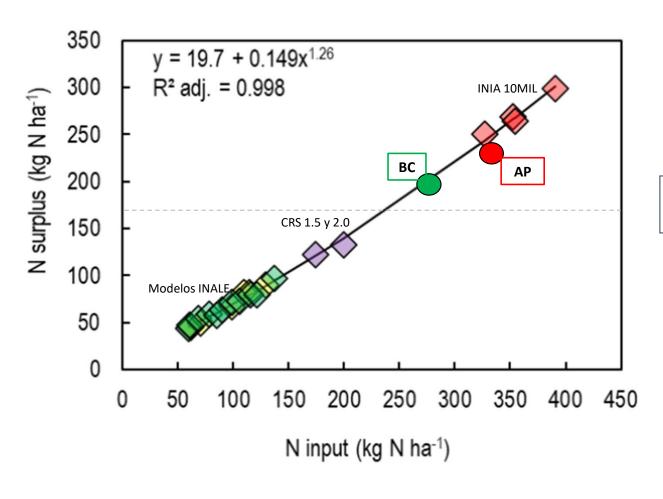
?


LIXIVIACIÓN EROSIÓN VOLATILIZACIÓN

Excedentes de nutrientes AP y BC

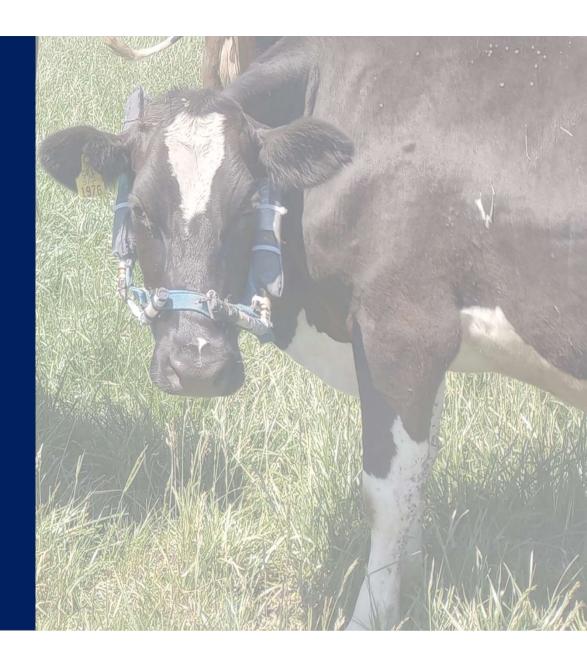



Distribución espacial de nutrientes



Distribución espacial de nutrientes

¿Dónde se ubican estos sistemas en relación a la información nacional?



Referencia nacional (Stirling et al., 2024):

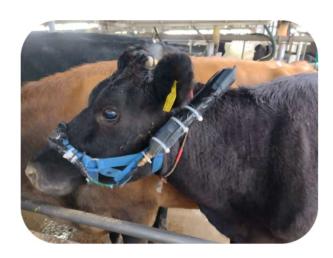
- **Surplus:** > 160 kg N ha⁻¹ mayor riesgo potencial de pérdida al ambiente
- NUE: 20 60% (24 33%)

Emisiones de metano

Ing. Agr. PhD. Cecilia Loza

Determinaciones

Períodos:

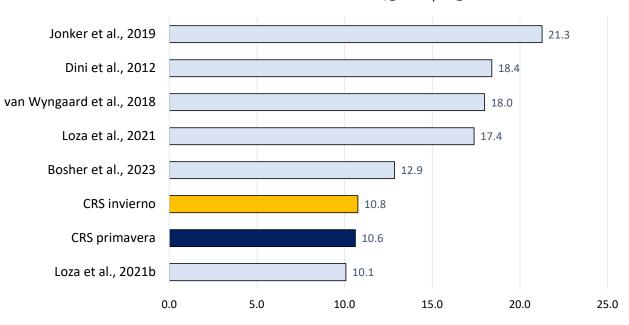

- Invierno (Julio)
- Primavera (Octubre)

Mediciones en los animales

- Emisiones de metano mediante la técnica de trazado por SF₆.
- Producción individual y composición de leche, por período.
- Consumo de MS del rodeo.

Mediciones en la pastura

- Biomasa disponible, pre y post-pastoreo con pasturómetro (C-DAX).
- Composición química al inicio de cada período.



Metano entérico – Intensidad de las emisiones

Intensidad de emisiones (g CH₄/kg LCGP)

	P1		P2	2
	AP	ВС	AP	ВС
g CH ₄ /kg LCGP	11	11	12	10
g CH₄/ha/año	333	305	199	174

Sustentabilidad: consideraciones finales

- Mayor intensificación determina un incremento en los excedentes de nutrientes.
- El tiempo de permanencia determina la existencia de puntos calientes: alto riesgo de pérdida al ambiente.
- Disponibilidad de infraestructura adecuada es clave para una re-utilización eficiente de los nutrientes: disminuir entradas.
- Cama a cielo abierto surge como una opción para implementarse en sistemas más intensivos.
- No se observaron diferencias significativas en las emisiones de CH₄ entre los sistemas AP y BC evaluados en el CRS.
- Muy buenos resultados en términos de eficiencia de producción con respecto a otros sistemas de base pastoril.
- Adecuada gestión de la pastura + suplementación es la clave.
- Sin embargo, la mayor carga de AP determina el incremento de las emisiones totales (ej.: gCH₄/ha).

Resultado económico de las estrategias productivas CRS

Ing. Agr. (Mag.) Ana Pedemonte, Ing. Agr. Jorge Artagaveytia

Participan:

Colaboran:

¿Qué resultado tendría un tambo si adoptara estas estrategias?

4Prom: 139 vm 690.000 L 220 ha

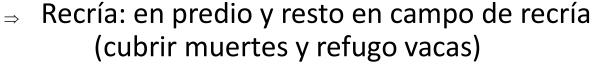
VM: 145 ha Recría: 50 ha 1,0 VM/ ha VM 18 L/VO/d Alta
Productividad
345 VM
2.200.000 L
220 ha

VM: 145 ha Recría: 64 ha

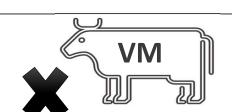
Bajo Costo

248 VM 1.600.000 L 220 ha BC

Resultados Investigación


Expansión a predio comercial

⇒ Producción (L/VO/día),


VO/VM= 0,83

⇒ Cantidad de VO,

- ⇒ Mano de obra: f (producción, superficie, salas, recría, mixer)
- ⇒ Rotación (tecnología producción de pasto) =>
 Área VM (plataforma + reservas + infraestructura + desperdicios)

Análisis

Requerimientos:

- Suplementos
- Otros insumos
- Mano de obra
- Serv. contratados
- Asistencia técnica

Inversiones increm.:

- Animales (vacas y recría)
- Infraestructura
- Maquinaria
- Base forrajera

Resultados:

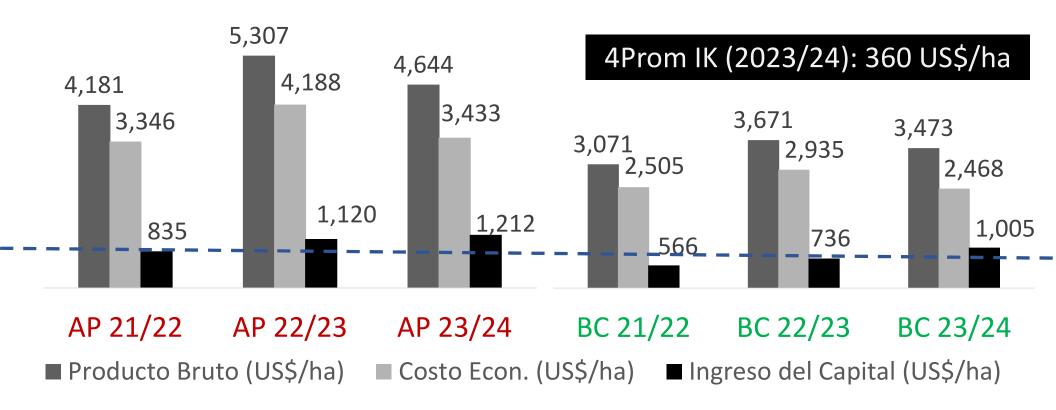
- Productivos
- Económico-financieros

Recursos productivos (Ej. 2023/2024)

	4Prom	AP		BC	
₩ Vacas (cabezas)	139	345	x 2,5	248	x 1,8
Superficie total (hectáreas)	220	220	x 1	220	x 1
Personas trabajadoras	4,1	6,3	x 1,5	5,7	x 1,4
Activos totales (millones US\$)	1,7	2,6	x 1,5	2,0	x 1,2
Producción anual (kg sólidos)	60.568	192.212	x 3,2	142.109	x 2,4

Principales características de las estrategias

	AP 21/22	AP 22/23	AP 23/24	BC 21/22	BC 22/23	BC 23/24
Dotación (VM/ha VM)	2,3	2,2	2,4	1,6	1,6	1,7
Consumo pasto (kg MS/ ha plataforma)	6.700	4.800	6.907	5.200	4.200	5.265
Consumo concentrado (gramos MS/ litro)	303	346	306	263	309	323
Reservas compradas (% MS de reservas)	41%	47%	25%	48%	63%	0%


Productividad

		AP 21/22	AP 22/23	AP 22/23	BC 21/22	BC 22/23	BC 23/24
	Animal (kg sol/ VM)	491	610	557	525	585	573
	Animal (litros/ VO/ día)	19,9	23,6	20,9	21,1	22,5	21,6
***	Tierra (kg sol/ha VM)	1.149	1.347	1.325	849	924	980
7//	Tierra (litros/ha VM)	14.030	15.792	15.044	10.370	10.759	11.199
	Cont. sólidos (%)	8,2	8,5	8,8	8,2	8,6	8,8

Resultados económicos

Resultado económico

		AP 22/23		BC 21/22	BC 22/23	BC 23/24
Producto Bruto (US\$/ha)	4.181	5.307	4.644	3.071	3.671	3.473
Costos Económicos (US\$/ha)	3.346	4.188	3.433	2.505	2.935	2.468
Ingreso del Capital (US\$/ha)	835	1.120	1.212	566	736	1.005
Relación I/P	0,80	0,79	0,74	0,82	0,80	0,71
Rentabilidad Económica (R%)	8%	11%	10%	7%	9%	11%

Resultado unitario

			AP 22/23			
Precio leche (US\$/ litro)	0,43	0,50	0,46	0,43	0,50	0,46
Costo unitario* (US\$/ litro)	0,35	0,41	0,36	0,36	0,42	0,35
Margen unitario (US\$/litro)	0,08	0,09	0,10	0,07	0,08	0,11

^{*:} Incluye pagos por arrendamientos, intereses e impuestos

Modelos lecheros ejercicio 2023/24 (sólidos 7,49%):

Precio unitario: US\$ 0,40 - 0,41 / Costo unitario*: US\$ 0,36 -0,38

Costos de producción AP

AP 2023/2024

33%	12%	5% Depreciación mejoras	Sanida higien insemina	e, Vol	umin npra	Fletes
US\$/ton MS: 347	Mano de obra	5%		Impuestos		p. y mant. stalacion
	remunerada 7%	Pastoreos y campos recría	Fertiliz	Depre maqui	Comb.	Rep. y mant
Concentrados comprados	Contratación maquinaria	Ficto mano obra familiar	Semillas	Energía eléctrica		Asist técnica He Polietile

Costos de producción BC

BC 2023/2024

14% 6% 37% Fertiliza... Fletes Mano de Ficto mano obra obra US\$/ton MS: 348 Energía Deprec... remunerada familiar maquin... Semillas eléctrica Impu... Rep. y 7% mant. maqui... Contratación Concentrados Sanidad, higiene, comprados Rep. y mant. maquinaria insemina.. instalaciones Combus...

Comentarios finales

Pilares para obtención de buenos resultados:

- Manejo del pasto y carga
- Alimentación de las vacas
- Bienestar animal (confort)
- Biotipo animal (sólidos)
- Resiliencia

Logran IK/ ha = US\$ 1.000 sin compra de reservas (2023/24)

Comentarios finales

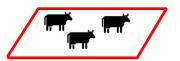
- AP y BC: costos unitarios y rentabilidades similares con estrategias de intensificación diferentes
- BC sistema producción más simple niveles de Ingreso
 Neto Familiar muy satisfactorio (9 veces ingreso medio per cápita de hogares rurales)

Estrategias de intensificación de sistemas lecheros: algunos aprendizajes

Participan:

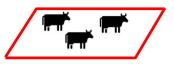
Colaboran:

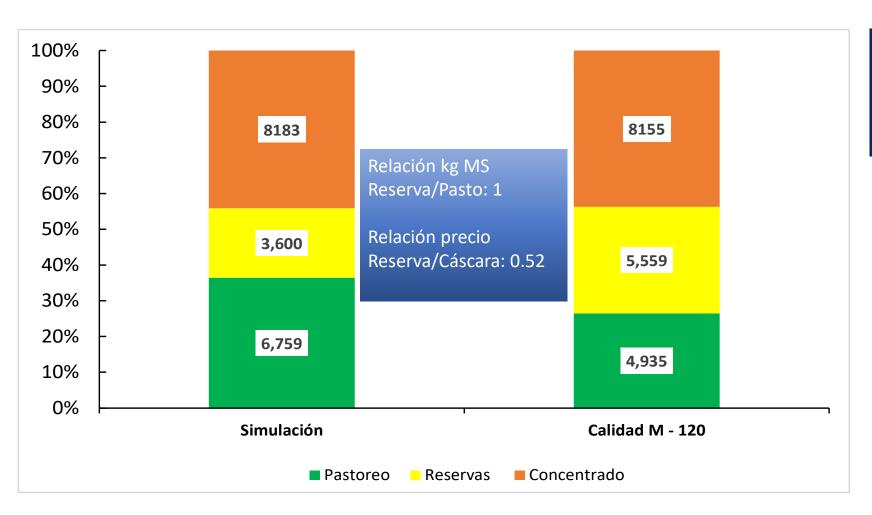
Uno ... Ajustes ante la falta de pasto


Producción de forraje

PP1	PP2	PP3	PP4	PP1 bian	ual PP2 bianual
		6 a	ños		
	Producci kg MS ha año	_		AP	ВС
	2021-20	22		7711	7846
	2022-2023			7747	6884
	2023-20	24		9844	8881
	Objetiv	0		102	229

Con que reemplazamos el forraje que nos falta?
22/23 - 30%

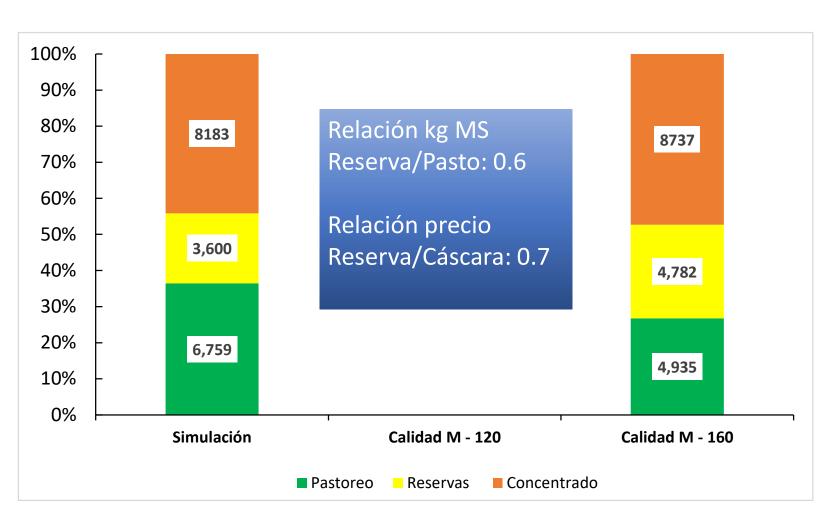

Alimentos utilizados



Área de apoyo de 8 ha = maíz para ensilaje = total 72 TT MS. Cuando no es suficiente, el sistema tiene la opción de comprar reservas o más suplemento.

	Composición química				
	PC	FDN	ENL	Precio	
	(%)	(%)	(Mcal/kg MS)	(USD/TT MS)	
Ensilaje Maíz	7	45	1.5	120	
Compra reservas "Calidad Media"	10	60	1.3	Variable	
Compra reserva "Calidad Baja"	7	75	1.15	Variable	
Cáscara Soja	13	63	1.8	230	
Concentrado Energético	8	11	2.0	300	
Concentrado proteico	44	25	1.9	450	

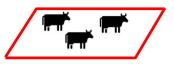
Estructura de alimentación: simulado vs. utilizado

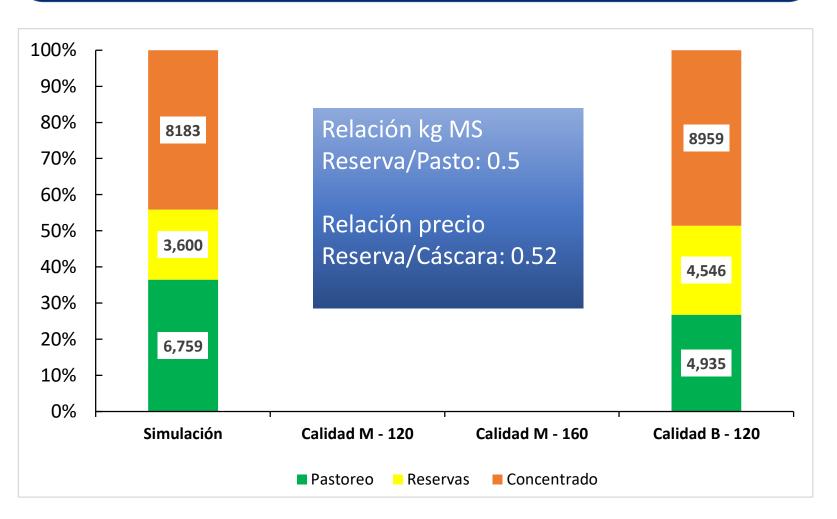


23.2 L VO/d 2.74 VO/ha PP 8.7 % sólidos 23171 L/ha PP 2015 kg sol/ha PP

Estructura de alimentación: simulado vs. utilizado

23.2 L VO/d 2.74 VO/ha PP 8.7 % sólidos 23171 L/ha PP 2015 kg sol/ha PP

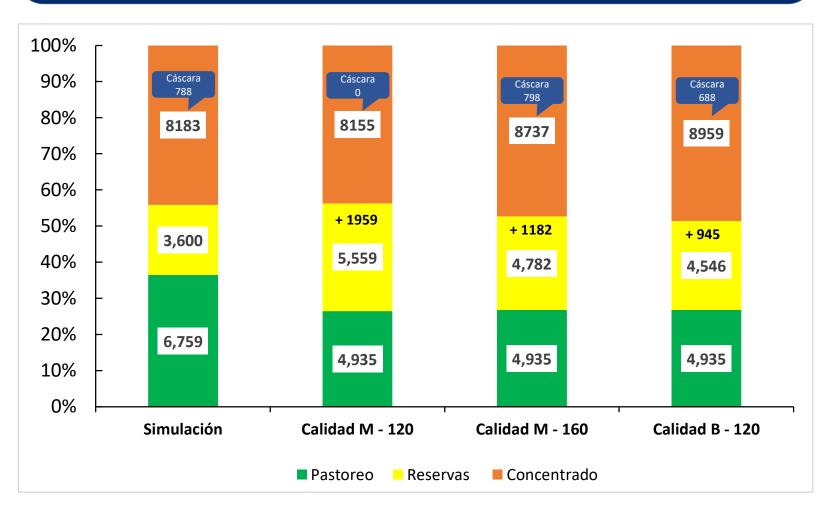

Alimentos utilizados



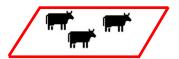
Área de apoyo de 8 ha = maíz para ensilaje = total 72 TT MS. Cuando no es suficiente, el sistema tiene la opción de comprar reservas o más suplemento.

	Composición química				
	PC	FDN	ENL	Precio	
	(%)	(%)	(Mcal/kg MS)	(USD/TT MS)	
Ensilaje Maíz	7	45	1.5	120	
Compra reservas "Calidad Media"	10	60	1.3	Variable	
Compra reserva "Calidad Baja"	7	75	1.15	Variable	
Cáscara Soja	13	63	1.8	230	
Concentrado Energético	8	11	2.0	300	
Concentrado proteico	44	25	1.9	450	

Estructura de alimentación: simulado vs. utilizado



23.2 L VO/d 2.74 VO/ha PP 8.7 % sólidos 23171 L/ha PP 2015 kg sol/ha PP


Estructura de alimentación: simulado vs. utilizado

23.2 L VO/d 2.74 VO/ha PP 8.7 % sólidos 23171 L/ha PP 2015 kg sol/ha PP

Herramientas de los sistemas

- Puede incrementar áreas de apoyo
- Puede stockear ensilaje
 - También cáscara soja en zafra!!
- Puede manejar suplementación fuera del tambo
- Puede manejar diferentes tipos de alimentos

- Tiene el área restringida a la PP
- Posibilidades limitadas de stockear reservas
- Posibilidades limitadas de manejar suplementación fuera del tambo
- Confección reservas programadas y prioriza

		Kg MS ha PP
)	2021-2022	1802
	2022-2023	1800
	2023-2024	2300

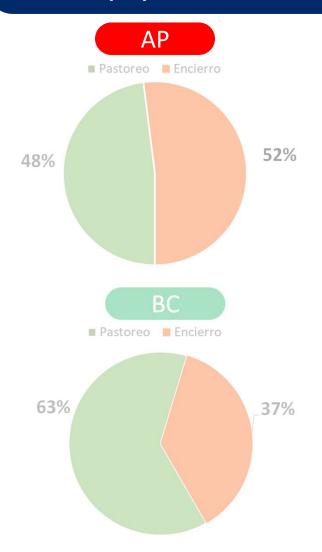
Dos Importancia de la Infraestructura

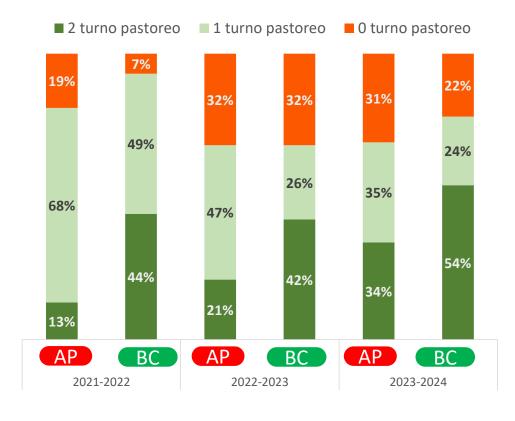
INFRAESTRUCTURA CRS 2016-2019

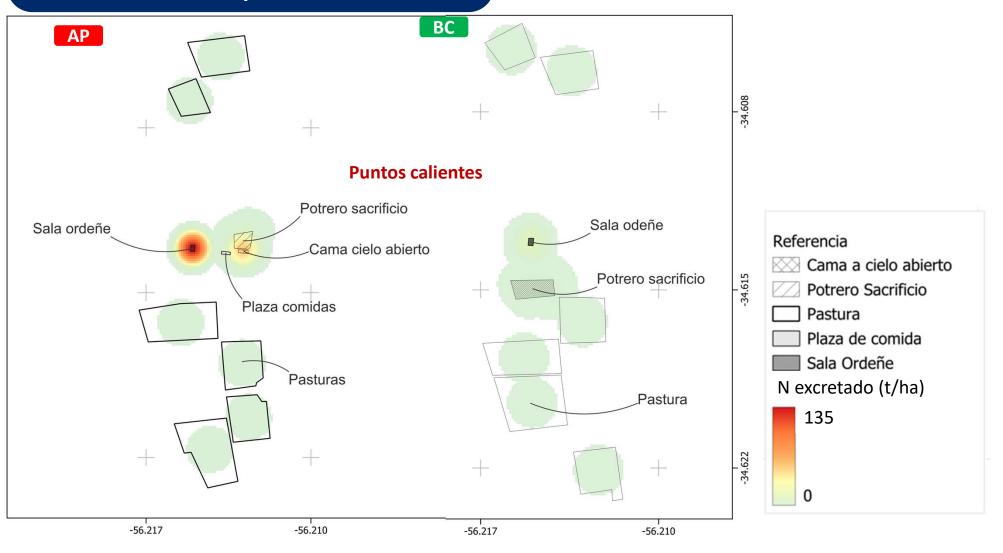
INFRAESTRUCTURA EEMAC 2019-2021

ESTRATEGIAS DE INTENSIFICACIÓN DE SISTEMAS LECHEROS

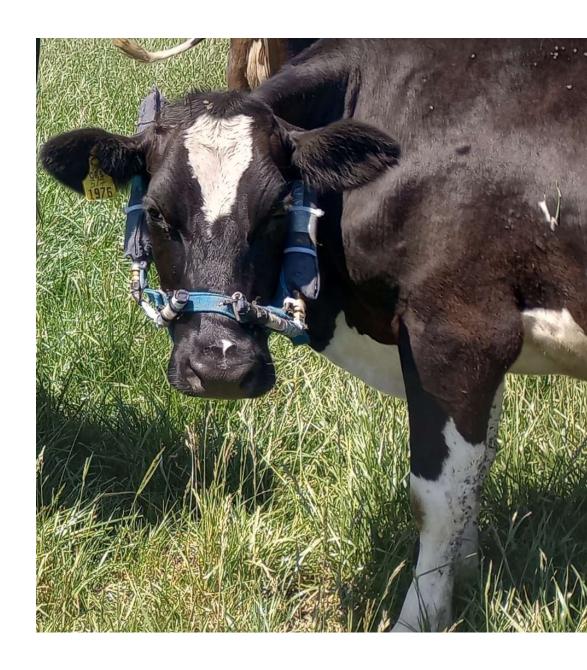
INFRAESTRUCTURA CRS 2021-2024







Tiempo pastoreo vs encierro



Distribución espacial de nutrientes

Sistemas mixtos:
muy competitivos
en emisión de
metano y con
potencial de
mejora

La infraestructura debe integrarse al sistema de producción con impacto en bienestar animal y manejo nutrientes

Tres

Si quiere tener éxito en la conducción de un experimento a nivel de sistemas....

....hágase de un buen grupo de seguimiento.

